BIDMaP is happy to be jointly hosting this year's seminar series with colleagues in computational physical sciences, including collaborators from the departments of Physics and Astronomy, and the Lawrence Berkeley National Laboratory.

Past Seminars

14
Mar
Image of Mariel Pettee

Mar. 14, 2024 – Mariel Pettee: What do language models have to say about physics?

The launch of ChatGPT in November 2022 ignited an ongoing worldwide conversation about the possible impacts of Large Language Models (LLMs) on the way we work. There is little doubt that LLMs will significantly influence many people's jobs: one prominent study estimated that about 20%...
07
Mar
View of Earth's atmosphere from space

2024 Berkeley Atmospheric Sciences Center (BASC) Symposium

The annual BASC Symposium will take place on March 7 and 8, 2024. This year, the theme is “Going with the flow: AI/ML in Atmospheric Science.” The speakers and schedule appear below. The “early-ish bird” registration deadline is this Friday, March 1 st , but...
07
Mar
Image of Shih-Chieh Hsu

Mar. 7, 2024 – Shih-Chieh Hsu: Accelerating Artificial Intelligence for Data-Driven Discovery

As scientific data sets become progressively larger algorithms to process this data quickly become more complex. In response Artificial Intelligence (AI) has emerged as a solution to efficiently analyze these massive data sets. Emerging processor technologies such as graphics processing units (GPUs) and field-programmable gate...
29
Feb
Aditi Krishnapriyan

Feb. 29, 2024 – Aditi Krishnapriyan

Machine learning methods for improving molecular simulations Molecular simulations aim to model the spatiotemporal behavior of atomistic systems throughout biology, chemistry, and materials science. Given the computational burden of running such simulations for long timescales, machine learning force fields, and particularly neural network interatomic potentials...
22
Feb
Image of Biwei Dai

Feb. 22, 2024 – Biwei Dai: Deep Probabilistic Models for Cosmological Analysis and Beyond

Current and future weak lensing surveys contain significant information about our universe, but their optimal cosmological analysis is challenging, with traditional analyses often resulting in information loss due to reliance on summary statistics like two-point correlation functions. While deep learning methods offer promise in capturing...
15
Feb
Dennis Noll

Feb. 15, 2024 – Dennis Noll: From Particle to Paper: Machine Learning for High-Energy Physics

The analysis of particle collisions at the Large Hadron Collider at CERN helps us to understand the fundamental building blocks of our universe. After years of data taking, the extraction of fundamental insights often requires intricate data analyses. Due to the large volume and complex...
08
Feb
Max Welling

Feb. 8, 2024 – Max Welling: Opportunities for ML in the Natural Science

Some of the most powerful techniques developed in ML are rooted in physics, such as MCMC, Belief Propagation, and Diffusion based Generative AI. We have recently witnessed that the flow of information has also reversed, with new tools developed in the ML community impacting physics...
01
Feb
Tess Smidt

Feb. 1, 2024 - Tess Smidt: Harnessing the properties of equivariant neural networks to understand and design atomic systems

Atomic systems (molecules, crystals, proteins, etc.) are naturally represented by a set of coordinates in 3D space labeled by atom type. This poses a challenge for machine learning due to the sensitivity of coordinates to 3D rotations, translations, and inversions (the symmetries of 3D Euclidean...
25
Jan
Daniel King

Jan. 25, 2024 – Daniel King: Moving Beyond Density Functional Theory with Multiconfigurational Methods and Machine Learning

Density functional theory (DFT) lies at the heart of all practical applications of theoretical chemistry. However, it is well-known that DFT often provides unsatisfactory descriptions of many important systems: non-equilibrium geometries, such as transition states, and strongly correlated systems, such as transition metals and excited...
18
Jan
Flyer advertising BIDMaP-CCAI symposium

Jan. 18, 2024: Fireside chat with Théo Jaffrelot Inizan and Saumil Chheda

Please join us for an interdisciplinary discussion of scientific themes addressed in this series. We'll have lightning talks by Saumil and Théo (BIDMaP Fellows) to start, and then an informal meeting in the seminar space with tables for small or large group discussions.
11
Jan
Mona Abdelgaid

Jan. 11, 2024 – Mona Abdelgaid: Catalyst Design for Dehydrogenation of Light Alkanes to Olefins

Propylene is an important building block for the manufacturing of various chemicals and plastic products. The ever-increasing propylene demand is hardly met by traditional oil-based cracking processes, known for their high energy consumption and substantial CO 2 emissions. Leveraging the abundance of light alkanes from...
07
Dec
Peichen Zhong

Dec. 7, 2023 - Peichen Zhong: Advancing simulation and learning for complex energy materials

The pursuit of carbon neutrality has become a global imperative in the face of climate change, driving the transition to renewable energy sources and the widespread adoption of electric vehicles. Designing new cathode materials for energy storage is one promising avenue. Modern battery materials such...
30
Nov
Ping Tuo

Nov. 30, 2023 – Ping Tuo: Simulating the degradation of photovoltaic perovskites with extended time and length scale

Perovskite is one of the most promising photovoltaic materials for the future. While low stability has long been the bottleneck issue limiting their commercialization. In the past, by using enhanced sampling coupled with machine learning (ML) potential model, I have unraveled the degradation mechanism of...
16
Nov
Zach Zheng

Nov. 16, 2023 - Zach Zheng: ChatGPT for Reticular Chemistry

The advent of advanced large language models like ChatGPT marks a transformative era in scientific research, particularly in the field of reticular chemistry. This seminar focuses on how ChatGPT's natural language processing capabilities enable scientists to accelerate and innovate in their research endeavors. We will...
09
Nov
Weiqiang Zhu

Nov. 9, 2023 - Weiqiang Zhu: Deep Learning for Earthquake Monitoring

Seismic networks have consistently improved across extensive temporal and spatial scales, enhancing our capability to record subtle shaking signals of the Earth. The vast seismic archive poses a challenge for efficient data analysis, but also presents an opportunity to uncover many hidden signals from small...