BIDMaP is happy to be jointly hosting this year's seminar series with colleagues in computational physical sciences, including collaborators from the departments of Physics and Astronomy, and the Lawrence Berkeley National Laboratory.

Past Seminars

30
Jan
Daniel

Jan. 30, 2025 - Daniel Whiteson: Learning to find weird tracks

Finding particle tracks is a central component of searching for new phenomena, but is very a challenging combinatorial problem. Traditionally, track finding codes assume that tracks must be helical, which simplifies the task but also restricts power to discover new physics which might produce non-helical...
23
Jan
Fran

Jan. 23, 2025 - Franziska Bell: At-scale Human - AI Teams

At-scale Human - AI Teams In this talk, Dr. Franziska Bell will share the evolution of enterprise-scale human - AI teams, alongside corresponding examples and share her vision of the next generation of agentic-based AI. Biography Dr. Franziska Bell holds a PhD in theoretical chemistry...
09
Jan
Seminar

Jan. 9, 2025 - Shijing Sun: Teaching a Robot to Design Energy Materials

Artificial intelligence (AI) and robotics have emerged as transformative tools to accelerate materials research, however, challenges remain in realizing the full potential of computational designs in laboratory settings. With the rise of self-driving laboratories powered by automated experiments and AI-driven guidance, a paradigm shift in...
17
Dec
Yousung Jung

Hao Tang – Reinforcement learning-guided long-timescale simulation of defect diffusion in solids

Atomic diffusion in solids is an important process in various phenomena. However, atomistic simulations of diffusion processes are confronted with the timescale problem: the accessible simulation time is usually far shorter than that of experimental interests. In this work, we developed a long-timescale method using...
05
Dec
Vini

Dec. 5, 2024 - Vinicius Mikuni: Accelerating Discovery in High Energy Physics using AI

The past decade was marked by an exponential increase in the availability of experimental data in high energy physics, leading to unprecedented precision in the description of particle interactions. However, indirect evidence for new physics processes, such as the existence of dark matter, motivates the...
21
Nov
BARTOSZ

Nov. 21, 2024 - Bartosz Grzybowski: Algorithms for synthesis planning, reaction discovery and chemical industry.

After decades of rather unsuccessful attempts, computers are finally making impact on the practice of synthetic chemistry. This change is made possible by the combination of increased computing power and, above all, new algorithms to encode and manipulate synthetic knowledge at various levels, from sequences...
14
Nov
Lin

Nov. 14, 2024 - Lin Lin: Optimization and anti-symmetry in neural network variational Monte Carlo

Neural network wavefunctions optimized using the variational Monte Carlo method have been shown to produce highly accurate results for the electronic structure of atoms and small molecules, but the high cost of optimizing such wavefunctions prevents their application to larger systems. We propose the Subsampled...
07
Nov
Sherry Yang

Nov. 7, 2024 - Sherry Yang: Harnessing Generative Models for Scalable Materials Discovery

Generative models are increasingly used to produce novel scientific data, including crystal structures. In this talk, I will present two methods leveraging generative models for materials discovery. First, I will talk about UniMat, a unified crystal structure representation, which enables scalable generation of high-fidelity crystal...
31
Oct
Kieron Burke

Oct. 31, 2024 - Kieron Burke: Electronic structure calculations and the inexorable rise of machine learning

At least 50,000 papers each year report the results of Kohn-Sham density functional calculations for materials and molecular properties. This is a huge worldwide effort, growing rapidly with computer power and powerful machine-learning algorithms to search for desired properties. But all these calculations are limited...
24
Oct
Gerald2

Oct. 24, 2024 - Gerald Friedland: Information-driven Machine Learning

In this talk, I present a selection of ideas and algorithms that are presented in my recently published textbook of the same title [1]. The book introduces information measurement methodologies for machine learning that reduce the reliance on hyperparameters and model-type biases. This information-driven perspective...
17
Oct
Will

Oct. 17, 2024 - William Ratcliff: Applications of Artificial Intelligence to Neutron Scattering

Neutron scattering is a versatile technique for studying the structure and dynamics of materials. Unfortunately, there are a limited number of neutron sources available in the world to perform scientific experiments. In this talk, I will discuss the use of artificial intelligence to more efficiently...
10
Oct
Simon Batzner

Oct. 10, 2024 - Simon Batzner: Materials Discovery Using Simulations and Deep Learning

Despite the recent advances in physical simulations and machine learning, the exploration of novel inorganic crystals remains constrained by the expensive trial-and-error approaches. Recent developments in deep learning have shown that models can attain emergent predictive capabilities with increasing data and computation, in fields such...
03
Oct
Galaxy

BIDMaP Hackathon: Fair Universe Higgs Uncertainty Challenge

We are excited to host the 1st BIDMaP Hackathon with the Fair Universe Higgs Uncertainty Challenge. The challenge uses the example of the rate at which Higgs bosons are produced in the ATLAS detector at the LHC, and poses the question of how to infer...
12
Sep
Chengbin Zhao

Sept. 12, 2024 - Chengbin Zhao: Topology-Free Structure Construction of Metal-Organic Frameworks

The efficient construction of hypothetical metal-organic framework (MOF) structures is essential for advancing MOF-related research under the data-driven paradigm. This seminar will introduce a new computational program that is capable of constructing new MOF structures rapidly based on existing MOF structures and organic ligand libraries...
19
Aug
Final LZ

Aug. 19, 2024 - Linfeng Zhang: AI-Assisted Materials Design: From Multi-Scale Modeling to Multi-Scale Pre-Training

The rapid advancement of artificial intelligence is transforming materials modeling, simulation, and design. This report explores breakthroughs in AI-assisted materials design, emphasizing the transition from multi-scale modeling to multi-scale pre-training. These pre-trained models integrate literature, simulation, and experimental data in a novel manner, paving the...