BIDMaP is happy to be jointly hosting this year's seminar series with colleagues in computational physical sciences, including collaborators from the departments of Physics and Astronomy, and the Lawrence Berkeley National Laboratory.
Dark matter is one of the greatest enduring mysteries of fundamental physics. Despite countless direct and indirect searches for dark matter, still, the only evidence we have for it is through its gravitational effects on astrophysical and cosmological scales. In this talk, I will describe...
Biography: Professor Sigman was born in Los Angeles, California in 1970. He received a B.S. in chemistry from Sonoma State University in 1992 before obtaining his Ph.D. at Washington State University with Professor Bruce Eaton in 1996 in organometallic chemistry. He then moved to Harvard...
Biography: Professor Silverstein conducts research in theoretical physics -- particularly gravitation and cosmology, as well as recently developing new methods and applications for machine learning. What are the basic degrees of freedom and interactions underlying gravitational and particle physics? What is the mechanism behind the...
Biography: Professor Yousung Jung teaches Chemical and Biological Engineering at Seoul National University. His research background and interests involve quantum chemistry and machine learning to develop efficient methods for fast and accurate simulations of complex molecular and materials systems, and their applications towards the understanding...
Biography: Professor Thaler is a theoretical particle physicist who fuses techniques from quantum field theory and machine learning to address outstanding questions in fundamental physics. His current research is focused on maximizing the discovery potential of the Large Hadron Collider (LHC) through new theoretical frameworks...
Biography: Professor Corminboeuf researches and focuses on electronic structure theory in the area of method development and conceptual work applied to the field of homogeneous catalysis and organic electronics. Her group has contributed to the establishment of quantum chemical approaches and is involved in injecting...
Biography: Professor Ho joined the Physics Department as a Research Professor and as an Affiliated Faculty at Center for Data Science at NYU in 2021. Ho joined Simons Foundation in 2018 as leader of the Cosmology X Data Science group at CCA and in 2021...
Biography: Dr. Chan is a scientist at the Center for Nanoscale Materials at Argonne National Laboratory who studies nanomaterials and renewable energy materials, including solar cells, batteries, thermoelectrics, and catalysts. Her particular focus is on using artificial intelligence/machine learning ( AI/ ML) for efficient materials...
Biography: Professor Garnett's primary research interest is Bayesian active learning, with a focus on applications in the natural sciences and engineering. A major theme in his research is automating scientific discovery, broadly interpreted to include both theory and practice and both policy design and modeling...
Biography: Klaus-Robert Müller has been a professor of computer science at Technische Universität Berlin since 2006; at the same time he is directing rsp. co-directing the Berlin Machine Learning Center and the Berlin Big Data Center and most recently BIFOLD . He studied physics in...
Biography: Dr. Ching-Yao Lai and her group attack fundamental questions in ice-dynamics, geophysics, and fluid dynamics by integrating mathematical and machine-learned models with observational data. They use their findings to address challenges facing the world, such as advancing our scientific knowledge of ice dynamics under...
Transformer-based large language models are making significant strides in various fields, such as natural language processing, biology, chemistry, and computer programming. Here, we show the development and capabilities of Coscientist, an artificial intelligence system that autonomously designs, plans, and performs complex experiments by incorporating large...
The size of chemical space is vast. This makes the application of the first principles of quantum mechanical and advanced statistical mechanics sampling methods to identify binding motifs, conformational equilibria, and reaction pathways extremely challenging, even when considering better physical models, algorithms, or future exascale...
Polycyclic aromatic systems (PASs) present a seemingly insurmountable challenge: vast chemical spaces, complex electronic structures, and elusive aromatic properties. Our mission, should we choose to accept it, is to harness the power of deep learning to decode these molecular mysteries. In this talk, we embark...
Finding particle tracks is a central component of searching for new phenomena, but is very a challenging combinatorial problem. Traditionally, track finding codes assume that tracks must be helical, which simplifies the task but also restricts power to discover new physics which might produce non-helical...
At-scale Human - AI Teams In this talk, Dr. Franziska Bell will share the evolution of enterprise-scale human - AI teams, alongside corresponding examples and share her vision of the next generation of agentic-based AI. Biography Dr. Franziska Bell holds a PhD in theoretical chemistry...
Artificial intelligence (AI) and robotics have emerged as transformative tools to accelerate materials research, however, challenges remain in realizing the full potential of computational designs in laboratory settings. With the rise of self-driving laboratories powered by automated experiments and AI-driven guidance, a paradigm shift in...
The past decade was marked by an exponential increase in the availability of experimental data in high energy physics, leading to unprecedented precision in the description of particle interactions. However, indirect evidence for new physics processes, such as the existence of dark matter, motivates the...
After decades of rather unsuccessful attempts, computers are finally making impact on the practice of synthetic chemistry. This change is made possible by the combination of increased computing power and, above all, new algorithms to encode and manipulate synthetic knowledge at various levels, from sequences...
Neural network wavefunctions optimized using the variational Monte Carlo method have been shown to produce highly accurate results for the electronic structure of atoms and small molecules, but the high cost of optimizing such wavefunctions prevents their application to larger systems. We propose the Subsampled...
Generative models are increasingly used to produce novel scientific data, including crystal structures. In this talk, I will present two methods leveraging generative models for materials discovery. First, I will talk about UniMat, a unified crystal structure representation, which enables scalable generation of high-fidelity crystal...
At least 50,000 papers each year report the results of Kohn-Sham density functional calculations for materials and molecular properties. This is a huge worldwide effort, growing rapidly with computer power and powerful machine-learning algorithms to search for desired properties. But all these calculations are limited...
In this talk, I present a selection of ideas and algorithms that are presented in my recently published textbook of the same title [1]. The book introduces information measurement methodologies for machine learning that reduce the reliance on hyperparameters and model-type biases. This information-driven perspective...
Neutron scattering is a versatile technique for studying the structure and dynamics of materials. Unfortunately, there are a limited number of neutron sources available in the world to perform scientific experiments. In this talk, I will discuss the use of artificial intelligence to more efficiently...
Despite the recent advances in physical simulations and machine learning, the exploration of novel inorganic crystals remains constrained by the expensive trial-and-error approaches. Recent developments in deep learning have shown that models can attain emergent predictive capabilities with increasing data and computation, in fields such...
We are excited to host the 1st BIDMaP Hackathon with the Fair Universe Higgs Uncertainty Challenge. The challenge uses the example of the rate at which Higgs bosons are produced in the ATLAS detector at the LHC, and poses the question of how to infer...